The Crystal Structure of MgCl₂·6C₂H₅OH

GIOVANNI VALLE

Centro di Studio del C.N.R. sui Biopolimeri, Università di Padova, Padua, Italy

GIOVANNI BARUZZI, GUGLIELMO PAGANETTO

Centro Ricerche 'G. Natta', HIMONT S.p.A., Ferrara, Italy

GIOVANNI DEPAOLI, ROBERTO ZANNETTI and ANTONIO MARIGO

Dipartimento di Chimica Inorganica, Metallorganica ed Analitica dell'Università, via Loredan 4, 35131 Padua, Italy

(Received August 22, 1988)

The interaction between anhydrous $MgCl_2$ and many compounds having electron-donor behaviour (esters, alcohols and amines) has recently been the subject of much research. The reasons can be found both in the practical application of some adducts [1] and in theoretical and structural interest in the coordination produced around the Mg atom.

Crystallographic and spectroscopic techniques, and in particular X-ray diffraction (XRD) and IR measurements, found an important application in, for example, study of the $MgCl_2$ -ethyl benzoate system [2, 3].

A crystallographic investigation represents the best approach for the structural definition of the products, even if they are highly unstable. In the course of such a crystallographic investigation, we studied some solvates of MgCl₂ with alcohols, such as MgCl₂· nC_2H_5OH , MgCl₂· nCH_3OH and other alcohols. In particular, we considered the compound with six molecules of ethyl alcohol. This solvate has been previously studied by powder crystallographic techniques [4] and our study demonstrated the complete agreement of our XRD powder pattern with the one reported by the Russian authors.

The preparation of good single crystals of $MgCl_2$. $6C_2H_5OH$ led us to carry out a complete crystallographic investigation, in spite of the instability of the crystal. In this paper we report the results of this XRD single-crystal analysis, which clearly reveal the crystal and molecular structure and the coordination around the Mg atom.

Experimental

Preparation of MgCl₂ •6C₂H₅OH

The preparation was accomplished by introducing 18.6 g of dried MgCl₂ into a flask containing 100 g

0020-1693/89/\$3.50

TABLE	TABLE 1. Positional Coordinates and Thermal Anisotropic Parameters U (A ²) of MgCl ₂ ·6C ₂ H ₅ OH	dinates and Therr	mal Anisotropic	Parameters U (A	²) of MgCl ₂ ·6C ₂ I	H ₅ OH				
Atom	×	ý	z	K (occupancy)	v_{ti}	U_{22}	U ₃₃	U_{23}	U ₁₃	U ₁₂
Mg	0.0	0.0	0.0	0.1667	0.0141(75)	0.0200	0.0498(32)	0.0	0.0	-0.0117(119)
D	-0.3333	0.3333	0.0901(3)	0.3333	0.0392(125)	0.0287(160)	0.0935(23)	0.0	0.0	0.0107(227)
01	-0.0312(6)	0.1984(6)	0.1168(4)	1.0000	0.0411(23)	0.0408(21)	0.0664(26)	-0.0100(19)	-0.0070(19)	0.0255(19)
CI	0.0997(12)	0.3442(11)	0.2086(9)	1.0000	0.0589(49)	0.0419(36)	0.0864(56)	-0.0126(37)	-0.0115(40)	0.0237(34)
ឋ	0.0190(19)	0.3285(19)	0.3427(9)	1.0000	0.1116(89)	0.1279(91)	0.0550(54)	-0.0202(59)	-0.0126(58)	0.0559(76)
HOI	0.1069(74)	0.2185(69)	0.1078(46)	1.0000	0.0334(141)					
H1C1	0.2071(122)	0.3382(107)	0.2213(72)	1.0000	0.1046(272)					
H2C1	0.1209(118)	0.4438(116)	0.1785(76)	1.0000	0.0863(306)					
H1C2	0.0014(158)	0.2017(147)	0.3778(90)	1.0000	0.1665(426)					
H2C2	-0.1011(142)	0.2959(141)	0.3527(86)	1.0000	0.1385(393)					
H3C2	0.1204(118)	0.4266(115)	0.4044(74)	1.0000	0.1006(257)					

© Elsevier Sequoia/Printed in Switzerland

of absolute alcohol [4]. After complete solution of MgCl₂, the liquid was heated in a flask with a reflux condenser for 1 h and after filtration the solution was cooled in dry ice. The crystals so obtained were dried in vacuum, yielding the following results. *Anal.* Found: Mg, 6.45; Cl, 19.15; C₂H₅OH, 74.4. Calc. for MgCl₂·6C₂H₅OH: Mg, 6.54; Cl, 19.08; C₂H₅OH, 74.38%. Both XRD powder data and the melting point (72 °C) completely agree with the results of Turova *et al.* [4].

Single crystals were grown from a slightly supersaturated solution by recrystallization of the previously obtained powder. The crystals were small, colourless, hexagonal plates and their morphological stability was a problem that was surmounted by immersion in dried degased Vaseline/petrolatum (OBAT-55 Rol Oil).

Single Crystal for XRD Analysis

A diffraction-quality crystal $(0.7 \times 0.7 \times 0.7 \text{ mm})$ was obtained by cutting a larger crystal. Because of the sensitivity of the crystal to oxygen and moisture, the sample was sealed in a quartz capillary and filled with Vaseline/petrolatum. These operations were carried out in a glovebox and in an oxygen- and moisture-free nitrogen atmosphere.

Data Collection and Structural Analysis

The crystals are trigonal, space group $P\bar{3}$ (N.147) with a = 7.930(1) Å (1 Å = 0.1 nm); c = 9.964(1) Å; V = 542.6 Å³; Z = 1; $d_{calc} = 1.137$ g cm⁻³. These values are in a good agreement with the data reported by Turova *et al.* [4], obtained by powder XRD: $a = 7.95 \pm 0.01$ Å; $c = 9.95 \pm 0.01$ Å; $d_{calc} = 1.13$ g cm⁻³; $d_{obs} = 1.17$ g cm⁻³.

Of the 2041 reflections collected for the sectors *hkl*, *hkl* and *hkl* on a Philips PW 1100 diffractometer, 855 were independent at $R_{int} = 0.1$. Mo K α radiation ($\lambda = 0.71069$ Å) was used and the collection system was the $\theta - 2\theta$ scan up to $2\theta = 56^{\circ}$.

The Patterson map indicated the heavier atoms were on the ternary axes. Nevertheless, the corresponding least-squares computation diverged for the trigonal system, whereas, by using the triclinic space group P1, the R value $(R = \Sigma(|F_o| - |F_c|)/\Sigma|F_o|$, where F_o and F_c are the observed and calculated structure factors) was lowered to 5.7%. By using the triclinic coordinates and least-squares procedures, the trigonal space group $P\bar{3}$ converged to R = 5.26% for the 475 reflections showing $I \ge 3\sigma(I)$.

Table 1 gives the atomic coordinates of the structural unit and their relative errors (σ) .

Figure 1 shows the 001 projection of the complex, including all the chloride ions hydrogen bonded to the coordinated oxygen atoms of the complex.

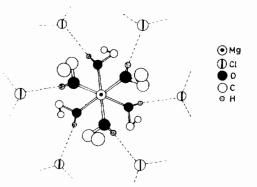


Fig. 1. The 001 projection of MgCl₂·6C₂H₅OH.

The structure consists of Mg atoms coordinated to six ethanol oxygens at a distance of 2.069(3) Å. The ethanol hydrogen atom forms a hydrogen bond with chlorine at 3.085(2) Å. Each chloride ion contributes to the formation of three hydrogen bonds.

Supplementary Material

This is available on request from the Cambridge Crystallographic Data Centre.

References

- 1 P. Barbé, G. Cecchin and L. Noristi, Advances in Polymer Science, Vol. 81, Springer-Verlag, Berlin/Heidelberg, 1987, p. 1.
- 2 S. A. Sergeev, G. D. Bukatov, E. M. Moroz and V. A. Zakharov, React. Kinet. Catal. Lett., 21 (1982) 403.
- 3 B. Keszler, G. Bodor and A. Simon, Polymer, 21 (1980) 1037.
- 4 N. Ya. Turova, E. P. Turevskaya and A. V. Novoselova, Russ. J. Inorg. Chem., 12 (1967) 901.